If it's not what You are looking for type in the equation solver your own equation and let us solve it.
900x^2-49910x-2000=0
a = 900; b = -49910; c = -2000;
Δ = b2-4ac
Δ = -499102-4·900·(-2000)
Δ = 2498208100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2498208100}=\sqrt{100*24982081}=\sqrt{100}*\sqrt{24982081}=10\sqrt{24982081}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49910)-10\sqrt{24982081}}{2*900}=\frac{49910-10\sqrt{24982081}}{1800} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49910)+10\sqrt{24982081}}{2*900}=\frac{49910+10\sqrt{24982081}}{1800} $
| 5a+8=58 | | 4x-3-2×=9+2x-12 | | 2/7÷1/3=n | | -4+6x=10 | | 1/3+2m=m=3/2 | | 4x+15,000=109000 | | 1/2(5x-7)=14x+1 | | 10x+6=4x+6x | | -w+8.5w=12 | | 2x+6=(6x-3)4/5 | | -5(5x-5)=-42x+30 | | 6(x/3)=36 | | 4(b-1)=-4+4*b | | 4/7(21x+1/2)=2(1/7-5/28x) | | P²-5p=2p-7 | | -6+6x=-90 | | 10x+40=3x+9 | | 0.2(d-6)=0.3d+5-2+0.1d | | 27n=80.73 | | .07m+35=68.25 | | x+10–14= | | 1.2x+10=0.8x+6 | | -2x+3(4)=-13 | | |6u-15|=3 | | 5=21-p | | 8(x−7)= | | 6n+2=2n+18 | | p+(4p)=360 | | 0.51y=153 | | 10(v+3)=70 | | 3=75a | | 6×+2y+4=0 |